Extensions 1→N→G→Q→1 with N=C32:9SD16 and Q=C2

Direct product G=NxQ with N=C32:9SD16 and Q=C2
dρLabelID
C2xC32:9SD16144C2xC3^2:9SD16288,790

Semidirect products G=N:Q with N=C32:9SD16 and Q=C2
extensionφ:Q→Out NdρLabelID
C32:9SD16:1C2 = S3xD4.S3φ: C2/C1C2 ⊆ Out C32:9SD16488-C3^2:9SD16:1C2288,576
C32:9SD16:2C2 = Dic6.19D6φ: C2/C1C2 ⊆ Out C32:9SD16488-C3^2:9SD16:2C2288,577
C32:9SD16:3C2 = D12:9D6φ: C2/C1C2 ⊆ Out C32:9SD16488-C3^2:9SD16:3C2288,580
C32:9SD16:4C2 = D12.22D6φ: C2/C1C2 ⊆ Out C32:9SD16488-C3^2:9SD16:4C2288,581
C32:9SD16:5C2 = C24:8D6φ: C2/C1C2 ⊆ Out C32:9SD1672C3^2:9SD16:5C2288,768
C32:9SD16:6C2 = C24.26D6φ: C2/C1C2 ⊆ Out C32:9SD16144C3^2:9SD16:6C2288,769
C32:9SD16:7C2 = SD16xC3:S3φ: C2/C1C2 ⊆ Out C32:9SD1672C3^2:9SD16:7C2288,770
C32:9SD16:8C2 = C24.32D6φ: C2/C1C2 ⊆ Out C32:9SD16144C3^2:9SD16:8C2288,772
C32:9SD16:9C2 = C62.131D4φ: C2/C1C2 ⊆ Out C32:9SD1672C3^2:9SD16:9C2288,789
C32:9SD16:10C2 = C62.75D4φ: C2/C1C2 ⊆ Out C32:9SD16144C3^2:9SD16:10C2288,808
C32:9SD16:11C2 = C62.74D4φ: trivial image144C3^2:9SD16:11C2288,807


׿
x
:
Z
F
o
wr
Q
<